Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 26(11): 8604-8612, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38319643

RESUMO

By analysing the results of ab initio simulations performed for Mn3Si2X6 (X = Se, Te), we first discuss the analogies and the differences in electronic and magnetic properties arising from the anion substitution, in terms of size, electronegativity, band widths of p electrons and spin-orbit coupling strengths. For example, through mean-field theory and simulations based on density functional theory, we demonstrate that magnetic frustration, known to be present in Mn3Si2Te6, also exists in Mn3Si2Se6 and leading to a ferrimagnetic ground state. Building on these results, we propose a strategy, electronic doping, to reduce the frustration and thus to increase the Curie temperature (TC). To this end, we first study the effect of electronic doping on the electronic structure and magnetic properties and discuss the differences in the two compounds, along with their causes. Secondly, we perform Monte-Carlo simulations, considering from the first to the fifth nearest-neighbor magnetic interactions and single-ion anisotropy, and show that electron doping efficiently raises the TC.

2.
Appl Environ Microbiol ; 90(2): e0155323, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38259079

RESUMO

Anti-viral surface coatings are under development to prevent viral fomite transmission from high-traffic touch surfaces in public spaces. Copper's anti-viral properties have been widely documented, but the anti-viral mechanism of copper surfaces is not fully understood. We screened a series of metal and metal oxide surfaces for anti-viral activity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease (COVID-19). Copper and copper oxide surfaces exhibited superior anti-SARS-CoV-2 activity; however, the level of anti-viral activity was dependent on the composition of the carrier solution used to deliver virus inoculum. We demonstrate that copper ions released into solution from test surfaces can mediate virus inactivation, indicating a copper ion dissolution-dependent anti-viral mechanism. The level of anti-viral activity is, however, not dependent on the amount of copper ions released into solution per se. Instead, our findings suggest that degree of virus inactivation is dependent on copper ion complexation with other biomolecules (e.g., proteins/metabolites) in the virus carrier solution that compete with viral components. Although using tissue culture-derived virus inoculum is experimentally convenient to evaluate the anti-viral activity of copper-derived test surfaces, we propose that the high organic content of tissue culture medium reduces the availability of "uncomplexed" copper ions to interact with the virus, negatively affecting virus inactivation and hence surface anti-viral performance. We propose that laboratory anti-viral surface testing should include virus delivered in a physiologically relevant carrier solution (saliva or nasal secretions when testing respiratory viruses) to accurately predict real-life surface anti-viral performance when deployed in public spaces.IMPORTANCEThe purpose of evaluating the anti-viral activity of test surfaces in the laboratory is to identify surfaces that will perform efficiently in preventing fomite transmission when deployed on high-traffic touch surfaces in public spaces. The conventional method in laboratory testing is to use tissue culture-derived virus inoculum; however, this study demonstrates that anti-viral performance of test copper-containing surfaces is dependent on the composition of the carrier solution in which the virus inoculum is delivered to test surfaces. Therefore, we recommend that laboratory surface testing should include virus delivered in a physiologically relevant carrier solution to accurately predict real-life test surface performance in public spaces. Understanding the mechanism of virus inactivation is key to future rational design of improved anti-viral surfaces. Here, we demonstrate that release of copper ions from copper surfaces into small liquid droplets containing SARS-CoV-2 is a mechanism by which the virus that causes COVID-19 can be inactivated.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Cobre/farmacologia , Antivirais , Óxidos , Íons
3.
Nano Lett ; 24(1): 215-221, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38117702

RESUMO

Closing the band gap of a semiconductor into a semimetallic state gives a powerful potential route to tune the electronic energy gains that drive collective phases like charge density waves (CDWs) and excitonic insulator states. We explore this approach for the controversial CDW material monolayer (ML) TiSe2 by engineering its narrow band gap to the semimetallic limit of ML-TiTe2. Using molecular beam epitaxy, we demonstrate the growth of ML-TiTe2xSe2(1-x) alloys across the entire compositional range and unveil how the (2 × 2) CDW instability evolves through the normal state semiconductor-semimetal transition via in situ angle-resolved photoemission spectroscopy. Through model electronic structure calculations, we identify how this tunes the relative strength of excitonic and Peierls-like coupling, demonstrating band gap engineering as a powerful method for controlling the microscopic mechanisms underpinning the formation of collective states in two-dimensional materials.

4.
Nano Lett ; 23(17): 8035-8042, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37638737

RESUMO

Engineering surfaces and interfaces of materials promises great potential in the field of heterostructures and quantum matter designers, with the opportunity to drive new many-body phases that are absent in the bulk compounds. Here, we focus on the magnetic Weyl kagome system Co3Sn2S2 and show how for the terminations of different samples the Weyl points connect differently, still preserving the bulk-boundary correspondence. Scanning tunneling microscopy has suggested such a scenario indirectly, and here, we probe the Fermiology of Co3Sn2S2 directly, by linking it to its real space surface distribution. By combining micro-ARPES and first-principles calculations, we measure the energy-momentum spectra and the Fermi surfaces of Co3Sn2S2 for different surface terminations and show the existence of topological features depending on the top-layer electronic environment. Our work helps to define a route for controlling bulk-derived topological properties by means of surface electrostatic potentials, offering a methodology for using Weyl kagome metals in responsive magnetic spintronics.

5.
Phys Rev Lett ; 130(9): 096401, 2023 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-36930931

RESUMO

We report the evolution of the electronic structure at the surface of the layered perovskite Sr_{2}RuO_{4} under large in-plane uniaxial compression, leading to anisotropic B_{1g} strains of ϵ_{xx}-ϵ_{yy}=-0.9±0.1%. From angle-resolved photoemission, we show how this drives a sequence of Lifshitz transitions, reshaping the low-energy electronic structure and the rich spectrum of van Hove singularities that the surface layer of Sr_{2}RuO_{4} hosts. From comparison to tight-binding modeling, we find that the strain is accommodated predominantly by bond-length changes rather than modifications of octahedral tilt and rotation angles. Our study sheds new light on the nature of structural distortions at oxide surfaces, and how targeted control of these can be used to tune density of state singularities to the Fermi level, in turn paving the way to the possible realization of rich collective states at the Sr_{2}RuO_{4} surface.

6.
Nat Mater ; 20(8): 1046-1047, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34321651
7.
Nano Lett ; 21(5): 1968-1975, 2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33600187

RESUMO

The transition-metal dichalcogenide VSe2 exhibits an increased charge density wave transition temperature and an emerging insulating phase when thinned to a single layer. Here, we investigate the interplay of electronic and lattice degrees of freedom that underpin these phases in single-layer VSe2 using ultrafast pump-probe photoemission spectroscopy. In the insulating state, we observe a light-induced closure of the energy gap, which we disentangle from the ensuing hot carrier dynamics by fitting a model spectral function to the time-dependent photoemission intensity. This procedure leads to an estimated time scale of 480 fs for the closure of the gap, which suggests that the phase transition in single-layer VSe2 is driven by electron-lattice interactions rather than by Mott-like electronic effects. The ultrafast optical switching of these interactions in SL VSe2 demonstrates the potential for controlling phase transitions in 2D materials with light.

8.
Chem Rev ; 121(5): 2816-2856, 2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33346644

RESUMO

The role of X-ray based electron spectroscopies in determining chemical, electronic, and magnetic properties of solids has been well-known for several decades. A powerful approach is angle-resolved photoelectron spectroscopy, whereby the kinetic energy and angle of photoelectrons emitted from a sample surface are measured. This provides a direct measurement of the electronic band structure of crystalline solids. Moreover, it yields powerful insights into the electronic interactions at play within a material and into the control of spin, charge, and orbital degrees of freedom, central pillars of future solid state science. With strong recent focus on research of lower-dimensional materials and modified electronic behavior at surfaces and interfaces, angle-resolved photoelectron spectroscopy has become a core technique in the study of quantum materials. In this review, we provide an introduction to the technique. Through examples from several topical materials systems, including topological insulators, transition metal dichalcogenides, and transition metal oxides, we highlight the types of information which can be obtained. We show how the combination of angle, spin, time, and depth-resolved experiments are able to reveal "hidden" spectral features, connected to semiconducting, metallic and magnetic properties of solids, as well as underlining the importance of dimensional effects in quantum materials.

9.
Proc Natl Acad Sci U S A ; 117(27): 15524-15529, 2020 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-32576687

RESUMO

The interplay between spin-orbit coupling and structural inversion symmetry breaking in solids has generated much interest due to the nontrivial spin and magnetic textures which can result. Such studies are typically focused on systems where large atomic number elements lead to strong spin-orbit coupling, in turn rendering electronic correlations weak. In contrast, here we investigate the temperature-dependent electronic structure of [Formula: see text], a [Formula: see text] oxide metal for which both correlations and spin-orbit coupling are pronounced and in which octahedral tilts and rotations combine to mediate both global and local inversion symmetry-breaking polar distortions. Our angle-resolved photoemission measurements reveal the destruction of a large hole-like Fermi surface upon cooling through a coupled structural and spin-reorientation transition at 48 K, accompanied by a sudden onset of quasiparticle coherence. We demonstrate how these result from band hybridization mediated by a hidden Rashba-type spin-orbit coupling. This is enabled by the bulk structural distortions and unlocked when the spin reorients perpendicular to the local symmetry-breaking potential at the Ru sites. We argue that the electronic energy gain associated with the band hybridization is actually the key driver for the phase transition, reflecting a delicate interplay between spin-orbit coupling and strong electronic correlations and revealing a route to control magnetic ordering in solids.

10.
Proc Natl Acad Sci U S A ; 115(51): 12956-12960, 2018 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-30514820

RESUMO

The ability to modulate the collective properties of correlated electron systems at their interfaces and surfaces underpins the burgeoning field of "designer" quantum materials. Here, we show how an electronic reconstruction driven by surface polarity mediates a Stoner-like magnetic instability to itinerant ferromagnetism at the Pd-terminated surface of the nonmagnetic delafossite oxide metal PdCoO2 Combining angle-resolved photoemission spectroscopy and density-functional theory calculations, we show how this leads to a rich multiband surface electronic structure. We find similar surface state dispersions in PdCrO2, suggesting surface ferromagnetism persists in this sister compound despite its bulk antiferromagnetic order.

11.
Nano Lett ; 18(7): 4493-4499, 2018 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-29912565

RESUMO

How the interacting electronic states and phases of layered transition-metal dichalcogenides evolve when thinned to the single-layer limit is a key open question in the study of two-dimensional materials. Here, we use angle-resolved photoemission to investigate the electronic structure of monolayer VSe2 grown on bilayer graphene/SiC. While the global electronic structure is similar to that of bulk VSe2, we show that, for the monolayer, pronounced energy gaps develop over the entire Fermi surface with decreasing temperature below Tc = 140 ± 5 K, concomitant with the emergence of charge-order superstructures evident in low-energy electron diffraction. These observations point to a charge-density wave instability in the monolayer that is strongly enhanced over that of the bulk. Moreover, our measurements of both the electronic structure and of X-ray magnetic circular dichroism reveal no signatures of a ferromagnetic ordering, in contrast to the results of a recent experimental study as well as expectations from density functional theory. Our study thus points to a delicate balance that can be realized between competing interacting states and phases in monolayer transition-metal dichalcogenides.

12.
ACS Nano ; 10(6): 6315-22, 2016 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-27267820

RESUMO

The electronic structure of two-dimensional (2D) semiconductors can be significantly altered by screening effects, either from free charge carriers in the material or by environmental screening from the surrounding medium. The physical properties of 2D semiconductors placed in a heterostructure with other 2D materials are therefore governed by a complex interplay of both intra- and interlayer interactions. Here, using time- and angle-resolved photoemission, we are able to isolate both the layer-resolved band structure and, more importantly, the transient band structure evolution of a model 2D heterostructure formed of a single layer of MoS2 on graphene. Our results reveal a pronounced renormalization of the quasiparticle gap of the MoS2 layer. Following optical excitation, the band gap is reduced by up to ∼400 meV on femtosecond time scales due to a persistence of strong electronic interactions despite the environmental screening by the n-doped graphene. This points to a large degree of tunability of both the electronic structure and the electron dynamics for 2D semiconductors embedded in a van der Waals-bonded heterostructure.

13.
Sci Adv ; 1(8): e1500495, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26601268

RESUMO

The Rashba effect is one of the most striking manifestations of spin-orbit coupling in solids and provides a cornerstone for the burgeoning field of semiconductor spintronics. It is typically assumed to manifest as a momentum-dependent splitting of a single initially spin-degenerate band into two branches with opposite spin polarization. Combining polarization-dependent and resonant angle-resolved photoemission measurements with density functional theory calculations, we show that the two "spin-split" branches of the model giant Rashba system BiTeI additionally develop disparate orbital textures, each of which is coupled to a distinct spin configuration. This necessitates a reinterpretation of spin splitting in Rashba-like systems and opens new possibilities for controlling spin polarization through the orbital sector.

14.
Sci Adv ; 1(9): e1500692, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26601308

RESUMO

Understanding the role of electron correlations in strong spin-orbit transition-metal oxides is key to the realization of numerous exotic phases including spin-orbit-assisted Mott insulators, correlated topological solids, and prospective new high-temperature superconductors. To date, most attention has been focused on the 5d iridium-based oxides. We instead consider the Pt-based delafossite oxide PtCoO2. Our transport measurements, performed on single-crystal samples etched to well-defined geometries using focused ion beam techniques, yield a room temperature resistivity of only 2.1 microhm·cm (µΩ-cm), establishing PtCoO2 as the most conductive oxide known. From angle-resolved photoemission and density functional theory, we show that the underlying Fermi surface is a single cylinder of nearly hexagonal cross-section, with very weak dispersion along k z . Despite being predominantly composed of d-orbital character, the conduction band is remarkably steep, with an average effective mass of only 1.14m e. Moreover, the sharp spectral features observed in photoemission remain well defined with little additional broadening for more than 500 meV below E F, pointing to suppressed electron-electron scattering. Together, our findings establish PtCoO2 as a model nearly-free-electron system in a 5d delafossite transition-metal oxide.

15.
Nano Lett ; 15(9): 5883-7, 2015 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-26315566

RESUMO

The dynamics of excited electrons and holes in single layer (SL) MoS2 have so far been difficult to disentangle from the excitons that dominate the optical response of this material. Here, we use time- and angle-resolved photoemission spectroscopy for a SL of MoS2 on a metallic substrate to directly measure the excited free carriers. This allows us to ascertain a direct quasiparticle band gap of 1.95 eV and determine an ultrafast (50 fs) extraction of excited free carriers via the metal in contact with the SL MoS2. This process is of key importance for optoelectronic applications that rely on separated free carriers rather than excitons.

16.
Adv Mater ; 27(26): 3894-9, 2015 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-26010071

RESUMO

The origin of the 2D electron gas (2DEG)stabilized at the bare surface of SrTiO3 (001) is investigated. Using high-resolution angle-resolved photoemission and core-level spectroscopy, it is shown conclusively that this 2DEG arises from light-induced oxygen vacancies. The dominant mechanism driving vacancy formation is identified, allowing unprecedented control over the 2DEG carrier density.

17.
Nano Lett ; 15(1): 326-31, 2015 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-25458168

RESUMO

Time- and angle-resolved photoemission measurements on two doped graphene samples displaying different doping levels reveal remarkable differences in the ultrafast dynamics of the hot carriers in the Dirac cone. In the more strongly (n-)doped graphene, we observe larger carrier multiplication factors (>3) and a significantly faster phonon-mediated cooling of the carriers back to equilibrium compared to in the less (p-)doped graphene. These results suggest that a careful tuning of the doping level allows for an effective manipulation of graphene's dynamical response to a photoexcitation.

18.
Phys Rev Lett ; 112(25): 257401, 2014 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-25014829

RESUMO

Bilayer graphene is a highly promising material for electronic and optoelectronic applications since it is supporting massive Dirac fermions with a tunable band gap. However, no consistent picture of the gap's effect on the optical and transport behavior has emerged so far, and it has been proposed that the insulating nature of the gap could be compromised by unavoidable structural defects, by topological in-gap states, or that the electronic structure could be altogether changed by many-body effects. Here, we directly follow the excited carriers in bilayer graphene on a femtosecond time scale, using ultrafast time- and angle-resolved photoemission. We find a behavior consistent with a single-particle band gap. Compared to monolayer graphene, the existence of this band gap leads to an increased carrier lifetime in the minimum of the lowest conduction band. This is in sharp contrast to the second substate of the conduction band, in which the excited electrons decay through fast, phonon-assisted interband transitions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...